Publications

Home - Publications
  1. Peterson A, Ingram K, Huang EJ, Parksong J, McKenney C, Bever G, Regot S, Systematic analysis of the MAPK signaling network reveals MAP3K-driven control of cell fate, Cell Systems, Volume 13, Issue 11, 2022, Pages 885-894.e4, ISSN 2405-4712, https://doi.org/10.1016/j.cels.2022.10.003.
  2. Pokrass MJ, Regot S. 3D time-lapse microscopy paired with endpoint lineage analysis in mouse blastocysts. STAR Protoc. 2021 Apr 8;2(2):100446. doi: 10.1016/j.xpro.2021.100446
  3. Clark HR, McKenney C, Livingston NM, Gershman A, Sajjan S, Chan IS, Ewald AJ, Timp W, Wu B, Singh A, Regot S. Epigenetically regulated digital signaling defines epithelial innate immunity at the tissue level. Nat Commun. 2021 Mar 23;12(1):1836. doi: 10.1038/s41467-021-22070-x.
  4. Pokrass MJ, Ryan KA, Xin T, Pielstick B, Timp W, Greco V, Regot S. Cell-Cycle-Dependent ERK Signaling Dynamics Direct Fate Specification in the Mammalian Preimplantation Embryo. Dev Cell. 2020 Nov 9;55(3):328-340.e5. doi: 10.1016/j.devcel.2020.09.013.
  5. Aikin TJ, Peterson AF, Pokrass MJ, Clark HR, Regot S. MAPK activity dynamics regulate non-cell autonomous effects of oncogene expression. eLife. 2020 Sep 17;9:e60541. doi: 10.7554/eLife.60541.
  6. Sung MH, Regot S. Editorial: Understanding Immunobiology Through the Specificity of NF-κB. Front Immunol. 2020 Jan 30;11:59. doi: 10.3389/fimmu.2020.00059.
  7. DeFelice MM*, Clark HR*, Hughey JJ, Maayan I, Kudo T, Gutschow MV, Covert MW, Regot S. NF-κB signaling dynamics is controlled by a dose-sensing autoregulatory loop. Sci Signal. 2019 Apr 30;12(579):eaau3568. doi: 10.1126/scisignal.aau3568.
  8. Kudo T, Jeknić S, Macklin DN, Akhter S, Hughey JJ, Regot S*, Covert MW*. Live-cell measurements of kinase activity in single cells using translocation reporters. Nat Protoc. 2018 Jan;13(1):155-169. doi: 10.1038/nprot.2017.128.
  9. de la Cova C, Townley R, Regot S*, Greenwald I*. A Real-Time Biosensor for ERK Activity Reveals Signaling Dynamics during C. elegans Cell Fate Specification. Dev Cell. 2017 Sep 11;42(5):542-553.e4. doi: 10.1016/j.devcel.2017.07.014.
  10. Regot S, Hughey JJ, Bajar BT, Carrasco S, Covert MW. High-sensitivity measurements of multiple kinase activities in live single cells. Cell. 2014 Jun 19;157(7):1724-34. doi: 10.1016/j.cell.2014.04.039. PubMed PMID: 24949979; PubMed Central PMCID: PMC4097317.
  11. Regot S, de Nadal E, Rodríguez-Navarro S, González-Novo A, Pérez-Fernandez J, Gadal O, Seisenbacher G, Ammerer G, Posas F. The Hog1 stress-activated protein kinase targets nucleoporins to control mRNA export upon stress. J Biol Chem. 2013 Jun 14;288(24):17384-98. doi: 10.1074/jbc.M112.444042. Epub 2013 May 3. PubMed PMID: 23645671; PubMed Central PMCID: PMC3682539.
  12. Regot S, Macia J, Conde N, Furukawa K, Kjellén J, Peeters T, Hohmann S, de Nadal E, Posas F, Solé R. Distributed biological computation with multicellular engineered networks. Nature. 2011 Jan 13;469(7329):207-11. doi: 10.1038/nature09679. Epub 2010 Dec 8. PubMed PMID: 21150900.
  13. Macia J*, Regot S*, Peeters T, Conde N, Solé R, Posas F. Dynamic signaling in the Hog1 MAPK pathway relies on high basal signal transduction. Sci Signal. 2009 Mar 24;2(63):ra13. doi: 10.1126/scisignal.2000056. PubMed PMID: 19318625.
  1. Wei, H., Du, S., Parksong, J., Pasolli, A. H., Matte-Martone, C., Regot, S., Gonzalez, L. E., Xin, T., & Greco, V. Organ function is preserved despite reorganization of niche architecture in the hair follicle. Cell Stem Cell. 2023 July 6. https://doi.org/10.1016/j.stem.2023.06.003.
  2. Wang Q, Hernández-Ochoa EO, Viswanathan MC, Blum ID, Do DC, Granger JM, Murphy KR, Wei AC, Aja S, Liu N, Antonescu CM, Florea LD, Talbot CC Jr, Mohr D, Wagner KR, Regot S, Lovering RM, Gao P, Bianchet MA, Wu MN, Cammarato A, Schneider MF, Bever GS, Anderson ME. CaMKII oxidation is a critical performance/disease trade-off acquired at the dawn of vertebrate evolution. Nat Commun. 2021 May 26;12(1):3175. doi: 10.1038/s41467-021-23549-3.
  3. Wu CC, Peterson A, Zinshteyn B, Regot S, Green R. Ribosome Collisions Trigger General Stress Responses to Regulate Cell Fate. Cell. 2020 Jul 23;182(2):404-416.e14. doi: 10.1016/j.cell.2020.06.006.
  4. Yang HW, Cappell SD, Jaimovich A, Liu C, Chung M, Daigh LH, Pack LR, Fan Y, Regot S, Covert M, Meyer T. Stress-mediated exit to quiescence restricted by increasing persistence in CDK4/6 activation. eLife. 2020 Apr 7;9:e44571. doi: 10.7554/eLife.44571.
  5. Yoon KJ, Ringeling FR, Vissers C, Jacob F, Pokrass M, Jimenez-Cyrus D, Su Y, Kim NS, Zhu Y, Zheng L, Kim S, Wang X, Doré LC, Jin P, Regot S, Zhuang X, Canzar S, He C, Ming GL, Song H. Temporal Control of Mammalian Cortical Neurogenesis by m6A Methylation. Cell. 2017 Nov 2;171(4):877-889.e17. doi: 10.1016/j.cell.2017.09.003.
  6. Sharifian H, Lampert F, Stojanovski K, Regot S, Vaga S, Buser R, Lee SS, Koeppl H, Posas F, Pelet S, Peter M. Parallel feedback loops control the basal activity of the HOG MAPK signaling cascade. Integr Biol. 2015 Apr;7(4):412-22. doi: 10.1039/c4ib00299g.
  7. Sanghvi JC, Regot S, Carrasco S, Karr JR, Gutschow MV, Bolival B Jr, Covert MW. Accelerated discovery via a whole-cell model. Nat Methods. 2013 Dec;10(12):1192-5. doi: 10.1038/nmeth.2724. Epub 2013 Nov 3. PubMed PMID: 24185838; PubMed Central PMCID: PMC3856890.
  8. Warringer J, Hult M, Regot S, Posas F, Sunnerhagen P. The HOG pathway dictates the short-term translational response after hyperosmotic shock. Mol Biol Cell. 2010 Sep 1;21(17):3080-92. doi: 10.1091/mbc.E10-01-0006. Epub 2010 Jun 29. PubMed PMID: 20587780; PubMed Central PMCID: PMC2930000.